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The stat ionary heat-conduction problem for an isotropic heat emitting off-center annulus is 
solved by using conforma[  t ransformat ions ;  the problem was analyzed in [1] for the pa r t i c -  
ular case of constant  heat emission.  A s imi la r  problem for  an of f -center  annutus with 
s t ra ight- l ine  anisotropy is also solved by using the s m a l l - p a r a m e t e r  method. 

1. Let an a rb i t r a ry  temperature  distr ibution be specified on the boundaries FI, F 2 of a heat-emit t ing 
of f -cen te r  annulus with eccentr ic i ty  d. The heat-conduction problem is formulated as follows: to find a 
function T(x, y) which sat isf ies the equation 

AT a~T ' O2T Q(x, y) (1.1) 
- -  F - -  

Ox 2 ay ~ )~ 

as well as the boundary conditions 

T!r, = f~(x, y), TIr~ = }~(x, y). (1.2) 

The solution of (1.1) and (1.2) is sought in the form of a sum T = U + V, where U and V sat isfy the 
following: 

A U = O ,  UIr ' =f~(x, V), Ulr ,=f~(x,  Y), (1.3) 

Q(x, Y) 5 V -  , Vlr~ = VI  r = O. ( 1 . 4 )  

Let us f i rs t  cons ider  the problem (1.3). It is obvious that without toss of general i ty it is sufficient 
to find a solution which sat isf ies on one c i rc le  only (for example, on F1) the boundary condition, and 
vanishes on the other  circle .  

The of f -center  annulus is mapped into a concentr ic  one by means of the function [2] 

z -'- c 
Z - - C  

(1.5) 

where  the real  value c and thus the origin of the coordinate sys tem are determined by the condition that 
the points c and --c are  symmet r i c  relat ive to both c i rc les ,  that is, 

1 ( / R i - - R ~  d , b,, = ~  d , bl = -2-  d 

The c i rc le  F 1 is mapped into the c i rc le  of radius Yl = (bl + c) /R~,  and the c i rc le  ]C 2 into the c i rc le  
72 = (b2 + c ) / R  2 where 72 > 71 > 1. The Laplace equation is invariant  with respect  to conformal  mappings 
therefore ,  in accordance  with the r emarks  made above it is sufficient that the solution be found of the 
following problem: 

02U i 1 OU 1 02U - 0 ,  U lo=v, = f (~), Ul~= w=O,  (1.6) 
a, ~ o 09 o "~ o~ ~ 
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w h e r e  

z -'- c = 1 / - ( x  + c)' + v ~ 
P =  ~ - ~  l V ( x - c ) '  + y~ " 

r . p : a r c t g [ l m ( Z + C i / R e { Z - ~ ,  c l ] .  " 
~..z--c / \ Z - - C  l J 

The  so lu t ion  of the p r o b l e m  (1.6) can  ea s i l y  be found by using the method of  the s epa ra t i on  of v a r i -  
ab l e s  [3]: 

2 v?(v~-W), U a ~  tn p -~ p~--~ ~a,~cosn,p-lrb,  s inn~),  (1.71 
2In 71 7~" ~=I . t?~ -- ?, J 

a0, an, b n being the coefficients of the Fourier expansion for the function f(q~). 

In the c a s e  of  i s o t h e r m i c  s u r f a c e s  (F1 ~ T1, F2 ~ T2) the t e m p e r a t u r e  d i s t r ibu t ion  is given by 

H =  T - - T ~ _  l n p - - l n ? ~  (1.8) 
T,_, - -  T I In Y2 - -  In Y1 

By se t t ing  H = c~ (0 < c~ < 1) the i s o t h e r m s  a r e  found, name ly ,  

' ~h -i- y2 = 

C 2 

Y1 

The pi :oblem (1.4) is now c o n s i d e r e d .  Its so lut ion can  be r educed  to the solut ion of the p rob l e m (1.3) 
p rov ided  a p a r t i c u l a r  so lu t ion  of  the P o i s s o n  equat ion  can  be found fo r  a given hea t  emi t t ing  function.  In 
the g e n e r a l  c a s e ,  h o w e v e r ,  if the P o i s s o n  equat ion is  t r a n s f o r m e d  by (1.5) one obta ins  

O (p, r 
AV . . . . .  IW2[~) ~ , (1.9) 

w h e r e  

l W'i=' :-: (1 - -  2p cos tp -!  f.)2 
z 4d- 

By expanding the r igh t -hand  side of (1.9) into a F o u r i e r  s e r i e s  one s eeks  a solut ion by means  of the 
s e p a r a t i o n  of va r i ab l e s .  By sa t i s fy ing  the boundary  condi t ions  (1.4), one f inal ly  obtains  the fol lowing e x -  
p r e s s i o n  f o r  the t e m p e r a t u r e :  

V = 

ln p _  "ey 
1 Yl ~lao 01) In 

2L In W v, 
"h 

~ i dn  - -  (n) In - d~l-!- "~']~ 
,o 

~l = z 
Yt 71 

;K a" (~l) c~ n fp - i b~ (~l) sin &l - -  .i ~1 (9"~1-~'-- 9-'hl~") a" ( ~l) c~ l~ r -i- b" (rl) sin n ' ( i .  10) 

a0, an ,  b n be ing  the F o u r i e r  coe f f i c i en t s  fo r  the r igh t -hand  s ide of  Eq. (1.9). 

F o r  the c a s e  of cons tan t  hea t  e m i s s i o n ,  which is i m p o r t a n t  in appl ica t ion ,  the solut ion of the p ro b l e m 
(1.4) is g iven by 

Q t ~ - [ ( x - - b ) Z @ f - -  o , = - -  - -  R~]--r 
V 2 2 .  

cd ln p 
Y1 

In __?_2 
Yt 

Z P --Y{ cosnq0 } (I. Ii) i 2cd ~-~ 2,, 2,, 
,~2n2 - -  /l~2n 0 n  " 

n = l  
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Fig, 1. Tempera ture  distr ibution in an off -center  annulus. 

Fig. 2. I so therms in an o f f -cen te r  anisotropic annulus (continuous tines) 
and in an isotropic annulus (dashed lines). 

Employing the Cauchy - H a d a m a r d  theorem it can easi ly  be shown that the above se r ies  is absolutely 
convergent  in the annulus ~/~/~ < p < Y~/Y1- 

In Fig. 1 graphs are  shown of the tempera ture  distr ibution in of f -center  annulus with constant  heat 
emiss ion  along the rays  f rom the center  of the c i rc le  ]'2. The label k indicates the tangent of the angle 
between the ray and the absc issa  axis Ox, read counterclockwise.  The calculations have been ca r r i ed  out 
for the following dimensions:  tt 1 = 1, R 2 = 0.25, d = 0.5. 

2. The obtained solutions can also be employed to determine the tempera ture  in an off--center annulus 
with a straightmiine anisotropy. Fo r  example,  the following problem is considered:  

~.~ OZT ~2 o~T - - 0 ,  T J . a = f ( x , g ) ,  T]w=O. (2.1) 
c3 x ~ @2 

In the above X t, ?'2 are the heat-conduction coefficients along the Ox, Oy axes, respect ively.  

It is assumed without loss of general i ty  that ?it > X2, and, consequently,  that X2/X 1 < 1, that is, it 
can be wri t ten as ;t2/X 1 = 1 - a  where 0 < e < 1. Equation (2.1) can now be rewri t ten  as 

02T 02T O~-T 
i ~ -  e -  ( 2 . 2 )  

OX 2 0.{12 Oy ~ 

The solution of (2.2) is sought in the form of power se r ies  in the powers of e: 
co 

r = ~ ena~ (x, 9'). 
n = 0  

To determine an(X, y) the problems are  obtained, 

Aa0=O , a 0 ] r , : f ( x ,  g), a0]r : 0 ,  

Aa~-- 02a~-1 , a~Jr~=O, a,~Tr ~ = 0  
Og ~ 

m 

or, by introducing the complex var iables  z = x + iy, z = x - i y ,  

4 02a'~ ( O~ 02 

azaz \ az ~ az& 

(n>~ 1) 

(2.3) 

(2.4) 

02= -O (2.5) 
Oz2 an - ~" 

The zeroth  approximation a0(x, y) is given by the formula  (1.7). By substituting the latter into (2.5), 
one obtains an inhomogeneous equation for  determining the f i r s t  approximation a1(x , y); its solution is 
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r e p r e s e n t e d  in the following manner :  

al (x, y) = ~p(), ~3 + u (x, y), 

where  g,(z, z) is the p a r t i c u l a r  solution de te rmined  by the r ight-hand side of (2.5), and U(x, y) is a harmonic  
function whose values  on the c i r c u m f e r e n c e  of the o f f - cen t e r  annulus a re  adopted in such a way that the 
boundary  conditions of the p rob l em  (2.4) a r e  sat isf ied.  Subsequent succes s ive  approx imat ions  can be ob-  
tained s imi l a r ly .  If the finding of a p a r t i c u l a r  solution of (2.5) is v e r y  difficult  one can employ the formula  
(10) to find the f i r s t  and subsequent  approximat ions .  

To give an example ,  one finds the f i r s t  approx imat ion  for  the p rob lem (2.1) by set t ing the t e m p e r a -  
ture on the curve  r I equal  to the cons tant  value T 0. 

The ze ro th  approx imat ion  a0(x, y) is obtained f rom the fo rmula  (1.8); the approximat ion  can be wri t ten  
as  follows: 

To r In z + c -}- tn  ~ - -  c 21n 7.~ , [3 = - -  
ao(x' Y)= 2 t. z - - c  z - - c - -  lnY2 

Vt 

By now using a0(x, y) one obtains fo r  the f i r s t  approx imat ion  the equation 

O z O z -  2 " (z ~ -  c~) "- ~ (-B ~ -  c~f  - " 

Hence, 

al(x'Y) 4 L z " - c -  ~ ~ - c 2  + . ( x ,  y). 

By changing to the coord ina tes  p, q) and by expanding the expres s ion  in the square  b racke t s  into a 
F o u r i e r  s e r i e s  one finds U(p,  r Final ly ,  the f i r s t  approx imat ion  is given by 

o p 

l~ I 2(p ~- -  l) , 1 ( "~,~--I l n - -  
al (p, r = 4-- t 1 -- 29 cos q)-!- p 2 " In ~'~ k, 7~ ]h 

7i 

k = t  2 1 

02k .02k" } (~f--  l) 2 , - - . ,  cosk(p 

2 - -  1 
!<=i 

(2.6) 

The continuous l ines in Fig. 2 show the i so the rms  in the anisot ropic  o f f - cen t e r  annulus (e = 0.5) 
using the f i r s t  approximat ion;  the dashed lines show the i s o t h e r m s  in the i sot ropic  annulus. The anisot ropy 
causes  a de fo rmat ion  of the c i r c u l a r  i s o t h e r m s  for  an isot ropic  annulus by extending or  c o m p r e s s i n g  them, 
r e spec t ive ly ,  in the d i rec t ion  of g r e a t e r  or  s m a l l e r  conductivi ty.  In the example  under cons idera t ion  the 

t e m p e r a t u r e  d i f ference  r eaches  15%. 

Here  it should be mentioned that in computing the s e r i e s  (1.11) and (2.6) it is sufficient  that the f i r s t  
few t e r m s  be calcula ted co r respond ing  to those indices k for  which the quantity ('/2/3/1) 2k >> 1; the gene ra l  
t e r m  can be r ep re sen t ed  as Re (peiq)) k and the sum of the r e m a i n d e r  of the s e r i e s  can the re fo re  be found 

as a sum of a g e o m e t r i c a l  p rog re s s ion .  

x , y  
bl, b2 
R 1 ,  R2 
T 
Q 
A 
Z=X+iy 
i = ~ f - 1  
nmf(z) 
Re f(z) 

N O T A T I O N  

a r e  the Ca r t e s i an  coordina tes ;  
a r e  the d i s t ances  between the cen te r s  of the c i r c l e s  and the origin; 
a r e  the radi i  of the c i r c l e s ;  
is the t e m p e r a t u r e ;  
is the t h r ee -d imens iona l  heat  emiss ion ;  
is the t h e r m a l  conductivity;  
is the point of the complex  plane z; 
is the imag ina ry  unit; 
is the imag ina ry  p a r t  of  complex  function f(z); 
is the r ea l  pa r t  of complex  function f(z). 
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