HEAT CONDUCTION FOR OFF-CENTER ANNULUS

V. 8. Kolesov, I. I. Fedik, UDC 536.24.02
and E. E. Chuiko

The stationary heat-conduction problem for an isotropic heat emitting off-center annulus is
solved by using conformal transformations; the problem was analyzed in [1] for the partic-
ular case of constant heat emission. A similar problem for an off-center annulus with
straight-line anisotropy is also solved by using the small-parameter method.

1. Let an arbitrary temperature distribution be specified on the boundaries I'y, I'y of a heat-emitting
off-center annulus with eccentricity d. The heat-conduction problem is formulated as follows: to find a
function T (x, y) which satisfies the equation
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The solution of (1.1) and (1.2) is sought in the form of a sum T = U + V, where U and V satisfy the
following:
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Let us first consider the problem (1.3). It is obvious that without loss of generality it is sufficient
to find a solution which satisfies on one circle only (for example, on I'y) the boundary condition, and
vanishes on the other circle.

The offcenter annulus is mapped into a concentric one by means of the function [2]
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where the real value ¢ and thus the origin of the coordinate system are determined by the condition that
the points ¢ and —¢ are symmetric relative to both circles, that is,
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The circle I’y is mapped into the circle of radius y; = (by + ¢) /R, and the circle Iy into the circle
vy = (by + ¢) /Ry, where v, > vy > 1. The Laplace equation is invariant with respect to conformal mappings
therefore, in accordance with the remarks made above it is sufficient that the solution be found of the
following problem:
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where

2l _y S tP g

G

® =arctg[lm(2——ii) / RE(Z:Z” .

L=

y

Z—C

The solution of the problem (1.68) can easily be found by using the method of the separation of vari-
ables [3]:
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ay, ap, by being the coefficients of the Fourier expansion for the function f(y).
In the case of isothermic surfaces (I'y ~ Ty, I'y ~ T,) the temperature distribution is given by

_T—T, lnp—lny
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H (1.8)

By setting H = « (0 < o < 1) the isotherms are found, namely,
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The problem (1.4) is now considered. Its solution can be reduced to the solution of the problem (1.3)
provided a particular solution of the Poisson equation can be found for a given heat emitting function. In
the general case, however, if the Poisson equation is transformed by (1.5) one obtains

AV = — %{;ﬁ’%’l : (1.9)
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By expanding the right-hand side of (1.9) into a Fourier series one seeks a solution by means of the
separation of variables. By satisfying the boundary conditions (1.4), one finally obtains the following ex-
pression for the temperature:
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ag, dp, by being the Fourier coefficients for the right-hand side of Eq. (1.9).

For the case of constant heat emission, which is important in application, the solution of the problem
(1.4) is given by
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Fig, 1. Temperature distribution in an off-center annulus.

Fig. 2. Isotherms in an off-center anisotropic annulus (continuous lines)
and in an isotropic annulus (dashed lines).

Employing the Cauchy —Hadamard theorem it can easily be shown that the above series is absolutely
convergent in the annulus 7§ /7% < p < ¥3 /4.

In Fig. 1 graphs are shown of the temperature distribution in off-center annuius with constant heat
emission along the rays from the center of the circle I';. The iabel k indicates the tangent of the angle
between the ray and the abscissa axis Ox, read counterclockwise. The calculations have been carried out
for the following dimensions: Ry =1, Ry = 0.25, d = 0.5,

2. The obtained solutions can also be employed to determine the temperature in an off-center annulus
with a straight-line anisotropy. For example, the following problem is considered:

2% 'ZT
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ax2 : Z?E_:O’ T"h:f(x’ y)’ Ti‘h:O. - (2'1)

In the above Ay, A, are the heat-conduction coefficients along the Ox, Oy axes, respectively.

It is assumed without loss of generality that A; > A,, and, consequently, that X, /A; < 1, that is, it
can be written as Ay /Ay =1 —¢ where 0 < ¢ < 1. Equation (2.1) can now be rewritten as
*T T T
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The solution of (2.2) is sought in the form of power series in the powers of ¢:

b

T = D ema, (X, y)
n=>0
To determine ay (x, y) the problems are obtained,
Aay =0, aylp =[(% #) @y, =0, 2.3)
Aan = —azi%:‘l— y Uy gI‘ = 0’ anII‘ =0 (ﬂ} l) (2'4)
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or, by introducing the complex variables z = x + iy, z = x —iy,
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The zeroth approximation a,(x, y) is given by the formula (1.7). By substituting the latter into (2.5},
one obtains an inhomogeneous equation for determining the first approximation a;{, y); its solutien is
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represented in the following manner:

4] ()C, y) = ‘llJ(Z, E) -+ u(x7 y);

where ¥(z, z) is the particular solution determined by the right-hand side of (2.5), and U(x, y)isa harmonic
function whose values on the circumference of the off-center annulus are adopted in such a way that the
boundary conditions of the problem (2.4) are satisfied. Subsequent successive approximations can be ob-
tained similarly. If the finding of a particular solution of (2. 5) is very difficult one can employ the formula
(10) to find the first and subsequent approximations.

To give an example, one finds the first approximation for the problem (2.1) by setting the tempera-
ture on the curve TI'y equal to the constant value Tj,.

The zeroth approximation a,(x, y) is obtained from the formula (1.8); the approximation can be written
as follows:
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By now using a,(x, y) one obtains for the first approximation the equation
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By changing to the coordinates p, ¢ and by expanding the expression in the square brackets into a
Fourier series one finds U(p, ¢). Finally, the first approximation is given by
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The continuous lines in Fig. 2 show the isotherms in the anisotropic off-center annulus (e = 0.5)
using the first approximation; the dashed lines show the isotherms in the isotropic annulus. The anisotropy
causes a deformation of the circular isotherms for an isotropic annulus by extending or compressing them,
respectively, in the direction of greater or smaller conductivity. In the example under consideration the
temperature difference reaches 15%.

Here it should be mentioned that in computing the series (1.11) and (2.6) it is sufficient that the first
few terms be calculated corresponding to those indices k for which the quantity (v, / 71)2 > 1; the general
term can be represented as Re (ueW)k and the sum of the remainder of the series can therefore be found
as a sum of a geometrical progression.

NOTATION
X,y are the Cartesian coordinates;
by, by are the distances between the centers of the circles and the origin;
Ry, Ry are the radii of the circles;
T is the temperature;
Q is the three-dimensional heat emission;
A is the thermal conductivity;
z =x +1iy is the point of the complex plane z;
i=v-1 is the imaginary unit;
Im £(z) is the imaginary part of complex function f(z);
Ref(z) is the real part of complex function f(z).
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